Schur Multipliers of the Known Finite Simple Groups

نویسنده

  • ROBERT L. GRIESS
چکیده

In this note, we announce some results about the Schur multipliers of the known finite simple groups. Proofs will appear elsewhere. We shall conclude with a summary of current knowledge on the subject. Basic properties of multipliers and covering groups of finite groups are discussed in [6]. Notation for groups of Lie type is standard [3], [8]. G' denotes the commutator subgroup of the group G, Z(G) the center of G, Z„ the cyclic group of order n ; other group theoretic notation is standard (see [5] or [6]). MP(G) denotes the p-primary component of the multiplier M(G) of the finite group G. m(G) is the order of M(G) and mp(G) is that of Mp(G). Also, q denotes a power of the prime p. We describe these results in a sequence of theorems. THEOREM 1. m2(G2(4)) = 2, m3(G2(3)) = 3, m2(F4(2)) = 2. In each of these cases, generators and relations for the (unique) covering group are given. THEOREM 2. M(A2(q)) s Z(S(7(3, q)\ i.e. m(SL/(3, q)) = 1. THEOREM 3. Let G be a Steinberg variation defined over a finite field of characteristic p, i.e. G = An(q\ n ^ 2, Dn(q\ n ^ 4, £>4(g), or E6(q). Then Mp(G) = 1 except for M2( A3(2)) s Z2, M3( X3(3)) s Z3 x Z3, M2( ,45(2)) s Z2 x Z2, M2( £6(2)) s Z2 x Z2. THEOREM 4. /ƒ G is a jRee group of type F4, rften m(G) = 1. THEOREM 5. The Tits simple group F4(2)' has trivial multiplier. THEOREM 6. The sporadic groups below have multipliers of the stated orders. AMS 1970 subject classifications. Primary 20C25, 20D05, 20G40; Secondary 20G05, 20F25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of finite $p$-groups by the order of their Schur multipliers ($t(G)=7$)

‎Let $G$ be a finite $p$-group of order $p^n$ and‎ ‎$|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$‎, ‎where ${mathcal M}(G)$‎ ‎is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer‎. ‎The classification of such groups $G$ is already known for $t(G)leq‎ ‎6$‎. ‎This paper extends the classification to $t(G)=7$.

متن کامل

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

متن کامل

On Schur Multipliers of Pairs and Triples of Groups with Topological Approach

In this paper, using a relation between Schur multipliers of pairs and triples of groups, the fundamental group and homology groups of a homotopy pushout of Eilenberg-MacLane spaces, we present among other things some behaviors of Schur multipliers of pairs and triples with respect to free, amalgamated free, and direct products and also direct limits of groups with topological approach.

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007